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Abstract
Working memory (WM) is an essential system of cognitive processes for a wide range of cognitive activities and is associated 
with diverse real-world outcomes. Despite extensive research in cognitive psychology, the complex multifaceted nature of 
WM is often overlooked in applied settings, such as clinical and neuroimaging research. This study investigated the latent 
structure of WM by examining a comprehensive set of WM tasks commonly used in both theoretical and applied research 
in cognitive psychology and psychiatric neuroimaging. A large sample of healthy, young adults (N = 608) completed a 
battery of WM tasks and other cognitive measures. Factor analyses and structural equation models revealed a three-factor 
structure: Storage, Executive Attention, and Updating. These factors were moderately correlated but contributed uniquely 
to explaining variance in intelligence measures. Furthermore, when the three factors were considered in a single model, 
only the Updating and Executive Attention factors had unique shared variance with intelligence. The findings support that 
WM is a multifaceted construct, with complex span and n-back tasks capturing important and distinct components related 
to real-world cognitive performance. This highlights the need for precise selection of measurement tools for WM in both 
theoretical and applied research contexts.
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Introduction

Working memory (WM) is a system of cognitive processes 
that maintains temporary access to a limited amount of 
information for ongoing processing in complex cognition 
(Baddeley & Graham, 1974; Baddeley, 2010; Cowan, 2014). 
It is an essential system for a wide range of mental activi-
ties, including planning, reasoning, learning, and compre-
hension (Cowan et al., 2024). Individual differences in WM 
are related to cognition generally (Kovacs & Conway, 2016) 
and are predictive of real-world outcomes, including reading 
comprehension (Daneman & Carpenter, 1980), mathemat-
ics performance (Ramirez et al., 2013), and writing ability 
(Swanson & Berninger, 1996). Hence, it is crucial to under-
stand the function and structure of WM across different 
fields of psychology and psychiatry. For example, previous 
work investigating cognitive abilities in people with schizo-
phrenia (SCZ) indicates that WM deficits are a hallmark 
symptom (Lee & Park, 2005; Forbes et al., 2009) closely 
associated with poor functional outcomes (Goldman-Rakic, 
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1994, 1999; Bowie & Harvey, 2006; Green, 1998; Green & 
Harvey, 2014; Kern et al., 2011). In addition, WM deficits 
are observed in a wide range of neuropsychiatric disorders 

(Abramovitch et al., 2021). However, despite extensive stud-
ies on WM in both basic and clinical/translational research, 
the construct validity of WM and the specific cognitive 
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mechanisms underlying performance of various WM tasks 
remain areas of active investigation.

Traditional psychological models of WM, such as Badde-
ley and Hitch’s multicomponent model (Baddeley & Hitch, 
1974), proposed distinctions among different components 
of WM, including domain-general central executive atten-
tion mechanisms and domain-specific memory storage sys-
tems. In contrast to Baddeley & Hitch, which emphasizes the 
structure of WM and different stores of memory, Cowan’s 
(1999) embedded processes model of WM centers on the 
function of WM and different states of memory representa-
tions, positing that WM consists of the temporarily activated 
portion of long-term memory managed by a central execu-
tive through focused attention. This emphasis on the role of 
attention during information processing inspired more recent 
theoretical models of WM to pinpoint the complex and flexi-
ble mechanisms by which information is activated and main-
tained. For example, Oberauer & Hein (2012) distinguished 
three components in WM: activated long-term memory, the 
region of direct access, and a single-item focus of attention. 
The theory emphasized that WM is an attention selection 
system to memory representations with temporary bindings 
of objects/features (Oberauer, 2019a), and that individual 
differences in WM reflect individual differences in a spe-
cific limit on establishing and maintaining these bindings 
(Oberauer, 2019b).

Working memory measures in different research 
areas

Although they differ in their emphasis on structure vs. func-
tion, different theoretical models of WM generally agree 
that WM is a complex, multi-faceted system with limited 
capacity. Thus, various tasks have been developed to meas-
ure individual differences in working memory capacity 
(WMC). These tasks typically involve active maintenance 
of to-be-recalled information and simultaneous processing 
of other information. However, different research areas seem 
to have different preferences when it comes to specific WM 
task paradigms.

For example, in the cognitive psychology and individual 
difference literature, complex span tasks (Conway et al., 
2005) are the most common tasks used to measure WMC. 
Unlike simple span tasks, a common measure of short-term 
memory, complex span tasks consist of a dual demand 
that requires participants to store and process information 
simultaneously. In this paradigm, WMC is the amount of 
information that can be maintained in the face of concur-
rent processing. For example, in the operation span task, 
participants solve math problems (processing component) 
while remembering a series of numbers (storage compo-
nent). Importantly, the storage and processing stimuli are 
from the same domain in any given complex span task, such 
that the processing task creates an intra-domain distraction 
condition that interferes with maintenance and rehearsal of 
the target information. For instance, in verbal/numerical 
complex span tasks, both the storage and processing stimuli 
are verbal/numerical, while in spatial complex span tasks, 
both the storage and processing stimuli are spatial. Measures 
of WMC from complex span tasks have demonstrated high 
reliability (Redick et al., 2012) and strong predictive validity 
(Conway et al., 2003; Schmiedek et al., 2009), making them 
widely applicable in cognitive psychology. Performance on 
complex span tasks correlates strongly with performance 
in experimental and real-world tasks that are theoretically 
assumed to require WM, such as reasoning (Kane et al., 
2004) and language comprehension (Daneman & Merikle, 
1996). Figure 1 shows the schematics of two commonly used 
complex span tasks.

In contrast, in the field of cognitive neuroscience, where 
brain imaging and electrophysiology studies are prevalent, 
n-back tasks (Owen et al., 2005) are most commonly used to 
measure WMC. Throughout the WM literature, there are two 
widely used variants of n-back tasks (Tubiolo et al., 2024). 
In one variant, herein referred to as the delayed-match-to-
sample n-back (NB-DMS), participants are presented with 
a series of stimuli—such as letters, numbers, figures, or pic-
tures—and make a target/nontarget judgment as to whether 
the current stimulus matches the one presented n items back 
(Moore & Ross, 1963; Ross, 1966a, b). The value of n can 
vary across experimental conditions to vary the memory and 
processing demands of the task, which is often referred to as 
WM load (Chen et al., 2008). The other variant of the n-back 
paradigm, referred to as the continuous delayed response 
n-back (NB-CDR), requires participants to respond to the 
current stimulus based on the stimulus presented n items 
back (with typically four response options that are one-to-
one mapped with four stimuli), effectively delaying their 
response for n items (Callicott et al., 1998, 1999, 2000). Fig-
ure 2 shows the schematics of the two types of n-back tasks.

Despite the common application of n-back tasks in cog-
nitive neuroscience, research has shown that performance 
on NB-DMS tasks and complex span tasks is only weakly 

Fig. 1   Top: Schematic of an Operation Span task item. In each item 
there are multiple trials of stimuli, typically consisting of a processing 
component (a mathematical equation) and a storage component (a let-
ter). On each trial participants must judge whether the mathematical 
equation is correct and memorize the letter. After a few trials, they 
need to recall the letters in their presented order. Bottom: Schematic 
of a Symmetry Span task item. In each item there are multiple trials 
of stimuli, typically consisting of a processing component (a figure of 
colored 8x8 grid) and a storage component (a random colored cell in 
a 4x4 grid). On each trial participants must judge whether the figure 
is symmetrical and then memorize the position of the colored cell in 
the 4x4 grid. After a few trials, they need to recall the cells in their 
presented order

◂



	 Cognitive, Affective, & Behavioral Neuroscience

correlated (correlations ranged from not significant to 0.32), 
although both types of tasks are theoretically designed to 
measure the same underlying WM construct (Kane et al., 
2007; Redick & Lindsey, 2013; Van Snellenberg et  al., 

2014a, b). Furthermore, both types of tasks have been found 
to account for unique variances in fluid intelligence (Kane 
et al., 2007). This is sometimes interpreted as evidence for 
the multifaceted nature of WM, such that complex span tasks 

Fig. 2   Top: Schematic of an NB-CDR 2-back trial. Stimuli typically 
consist of both numbers and spatial locations, and on each trial par-
ticipants must make the response corresponding to the stimulus dis-
played n trials previously. Bottom: Schematic of an NB-DMS 2-back 

trial, including a recent-probe lure trial. Participants must indicate 
whether each presented stimulus matches the stimulus presented n tri-
als previously
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and n-back tasks require separate components of the WM 
system (Redick & Lindsey, 2013). While complex span tasks 
mostly access executive attention processes, n-back tasks are 
thought to rely on updating processes; that is, at 2-back loads 
and higher, n-back tasks are relatively unique in requiring 
both addition and removal of items from the memory set 
(rather than simple addition in task with serial presentation 
of targets, such complex span tasks), in addition to maintain-
ing the temporal ordering of stimulus presentation.

Despite the popularity of complex span tasks and n-back 
tasks, several other tasks are also used in cognitive and 
psychiatric neuroimaging research to measure WMC. The 
Sternberg Item Recognition Paradigm (SIRP) is a short-term 
memory task requiring recognition of (typically) letters or 
words, but is often used as a WM task, especially when 
larger target sets (~5 to 8 items) are used (Sternberg, 1966; 
Rypma et al., 2002). The AX-Continuous Performance Test 
(AX-CPT) is used to measure context processing and goal 
maintenance (Redick & Engle, 2011). In this task, partici-
pants respond to specific cue-target sequences (e.g., respond 
to “X” only if it was preceded by “A”), which requires main-
tenance of the recent trial context in order to respond accu-
rately. Change detection tasks are short-term memory tasks 
that provide a measure of visual WMC via an estimate of 
the number of items an individual can hold in short-term 
memory at a time (Vogel & Machizawa, 2004). Finally, the 
Self-Ordered WM Task (SOT) requires participants to select 
all of the items in an array (of ~8 to 12 items) only one time 
each, in any order, thus requiring participants to remember 
all previously selected items throughout a trial and providing 
a fine-grained variation in WM load from 0 up to 8 or 12 
items (Van Snellenberg et al., 2014a, b, 2016).

Domain general and domain‑specific perspectives 
of working memory

It has been generally observed that all types of WMC 
measures are positively intercorrelated (Oberauer et al., 
2012). This pattern of positive intercorrelations has led 
to a domain-general interpretation of WM capacity, sug-
gesting that the psychometric general factor of WM largely 
reflects properties of a domain-general mechanism, namely 
executive attention (Engle & Kane, 2004). From this point 
of view, the variation in WM and its relationship with the 
broad range of real-world outcomes are primarily driven by 
individual differences in executive attention. This interpre-
tation is supported by the central role WM plays in higher-
order cognitive abilities, such as fluid reasoning (Cowan, 
2005). However, correlational evidence has shown that 
WMC is not always best accounted for by a unitary factor, 
but instead by multiple correlated lower-level factors that 
represent domain-specific processes such as verbal/spatial 
storage, coding, and rehearsal (Oberauer, 2019a, b). These 

factors indicate that individual differences in WMC may 
be determined jointly by domain-general cognitive mecha-
nisms, such as executive attention, and domain-specific 
mechanisms, such as verbal/spatial storage. This view has 
also been supported by studies testing the cross-domain pre-
dictive validity of different complex span tasks, such as ver-
bal and spatial span tasks, in which verbal span tasks were 
found to predict performance on other verbal measures but 
not on spatial ability measures (Daneman & Merikle, 1996; 
Morrell & Park, 1993; Shah & Miyake, 1996).

This theoretical diversity is also reflected in formal 
attempts to delineate the structure of WM subconstructs. 
The Cognitive Neuroscience Treatment Research to Improve 
Cognition in Schizophrenia (CNTRICS) initiative identi-
fied seven subconstructs of WM (Barch et al., 2009): Goal 
Maintenance, Interference Control, Maintenance Over Time, 
Updating, Strategic Encoding, Long-Term Memory Reacti-
vation, and Capacity (Barch & Smith, 2008). In the NIMH 
Research Domain Criteria (RDoC) Matrix (2024), four sub-
constructs of WM were formally encoded: active mainte-
nance, flexible updating, limited capacity, and interference 
control. In the current literature on individual differences in 
WM, some research focuses on a single general ability asso-
ciated with domain-free, attention-related cognitive func-
tions of WM, such as those proposed by Oberauer (2019a) 
and Engle (2002), while other research attempts to identify 
more specific cognitive abilities underlying WM capacity, 
thought to reflect different subconstructs of WM. As a result 
of these different approaches, several different psychometric 
models of WM have been proposed. Some models highlight 
the importance of executive attention as the critical, domain-
general factor of individual differences in WM (Engle & 
Kane, 2004), while other models propose multiple factors, 
thought to reflect multiple subconstructs of WM (Unsworth 
et al., 2014). Unfortunately, the debate is still ongoing for the 
number of factors that best account for individual differences 
in WM. These different theoretical perspectives underscore 
the complexity of WM and the need for precise measurement 
tools and demonstrate the many challenges of studying WM.

Over the years, various WM tasks have been employed 
across different fields and for different research purposes, 
leading to inconsistencies in findings. Most WM tasks are 
inherently complex, and likely measure multiple cognitive 
processes (Chatham et al., 2011; Unsworth et al., 2009). 
Furthermore, although different WM tasks, such as n-back 
and complex span tasks, were conceptually developed to 
measure the same WM system, they may not reflect the same 
underlying cognitive processes (Redick & Lindsey, 2013). 
In addition, the types and formats of the to-be-retrieved 
stimuli involved in these WM measures are usually differ-
ent across tasks. Each of these differences in cognitive func-
tions and task properties may have unique associations with 
cognitive behaviors and deficits, such as those observed in 
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schizophrenia or other psychiatric disorders, thereby influ-
encing research findings based on the selection of test meas-
ures and target cognitive behaviors or deficits.

These issues highlight that WM tasks are not function-
ally equivalent, and that measurements of individual per-
formance across tasks may not reflect the same underlying 
cognitive processes. This heterogeneity poses significant 
challenges for researchers attempting to understand the 
structure of WM in health and disease. As such, WM perfor-
mance deficits in patients with neurological and psychiatric 
disease observed using a variety of WM tasks could indeed 
reflect a diverse variety of interrelated deficits in cognition, 
each with distinct underlying neurobiological mechanisms. 
That is, neural correlates of WM deficit, such as those meas-
ured using functional neuroimaging or electroencephalog-
raphy, may depend on the cognitive processes elicited by 
specific task paradigms, rather than simply reflecting a uni-
tary WM deficit.

In the current study, we sought to address these chal-
lenges by investigating a comprehensive set of WM tasks 
that are commonly used in cognitive psychology and func-
tional neuroimaging research. A battery of WM tasks, as 
well as other neurocognitive measures, were administered to 
a large sample of healthy young adults, and a series of factor 
analyses and structural equation models were conducted to 
examine the covariance structure of individual differences 
in WMC. This allowed us to test the unitary general abil-
ity view of WM capacity (Engle, 2002) and the nonunitary, 
multi-faceted view (Kane et al., 2004; National Institute of 
Mental Health; 2024), and to determine whether the latent 
structure of WM appears to match the theoretical structures 
proposed by, e.g., CNTRICS and RDoC. To test these com-
peting accounts, we investigated the latent factor structure 
of WMC using a variety of cognitive tasks: complex span, 
NB-DMS, NB-CDR, SIRP, AX-CPT, change detection, 
SOT, and a subset of neurocognitive tests from the Penn 
Computerized Neurocognitive Battery (PennCNB) (Gur 
et al., 2010). The cognitive tasks included from the Pen-
nCNB were included in order to capture variance related 
to other cognitive processes, such as attention, long-term 
memory recognition, and processing speed. By examining 
the relationships among these tasks, we aimed to clarify the 
underlying structure of WM and its components to provide 
novel insights to the construct validity of WM measures for 
applied research, such as psychiatry and neuroimaging.

Methods

Participants

A total of 608 participants who were enrolled in under-
graduate courses in psychology at Stony Brook University 

were recruited to participate in this study. Inclusion crite-
ria for participants were 1) ability to use a computer and 
2) sufficient English language proficiency to understand 
task instructions. Participants received course credit for 
participation. See Table 1 for a demographics summary 
table. Stony Brook University admissions data indicates 
that undergraduates have a wide range of cognitive abili-
ties (e.g., the middle 50% of the 2018 freshman class had 
SAT scores from 1,250 to 1,400, suggesting that 25% of our 
sample will have scores > 1,400 and 25% will have scores 
< 1,250), which allowed us to capture meaningful variance 
in WM subconstructs.

Cognitive task battery

All participants completed a battery of 18 tasks, including 
9 WM tasks that are commonly used in psychiatric neuro-
imaging and cognitive psychology research, 7 tasks from 
the Penn Computerized Neurocognitive Battery (PennCNB) 
(Gur et al., 2010), and 2 subtests from the Wechsler Abbrevi-
ated Scale of Intelligence, 2nd Edition (WASI-II) (Wechsler, 
2011). See Table 2 for a summary of the tasks.

For each task, one or more measures were scored. 
However, for the purposes of this study, only a subset of 
these measures was selected for further analysis, particu-
larly for exploratory factor analyses (EFA). Specifically, 
all reaction time (RT) variables, except those from the 
Motor Praxis Test (MPRAXIS) and Finger-Tapping Task 
(FTAP), were excluded from the analyses. Preliminary 

Table 1.   Demographics of the participants recruited at stony brook 
university for the current study

N (SD or %)

Age 19.83 (2.39)
Gender
Male (M) 197 (32.40%)
Female (F) 407 (66.94%)
Not reported (NA) 4 (0.66%)
Race
White (W) 159 (26.15%)
African American (AA) 62 (10.20%)
Asian (AS) 325 (53.45%)
American Indian (AI) 2 (0.33%)
Pacific Islander (PI) 2 (0.33%)
Multiracial (MR) 29 (4.77%)
Other 24 (3.95%)
Not reported (NA) 5 (0.82%)
Ethnicity
Hispanic (H) 68 (11.18%)
Non-Hispanic (NH) 458 (75.33%)
Not reported (NA) 82 (13.49%)
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factor analyses indicated that RT measures across all tasks 
consistently loaded onto a single RT factor, distinct from 
other task variables.

That said, RT variables from MPRAXIS and FTAP 
were retained but only as part of a residualization pro-
cedure (see details below). For all other tasks, a single 
non-RT performance measure was selected based on two 
criteria: (1) its common usage in the literature, and/or (2) 
its observed split-half reliability. Thus, for each task, a 
single accuracy-based measure with acceptable reliability 
was retained for analysis. Details on the split-half reliabil-
ity analysis are provided in the Supplementary Information 
("Reliability Analysis").

The following section describes the specific tasks admin-
istered and their corresponding primary measures used in 
this study's analyses.

Working memory tasks

Operation span (OSpan)  The Operation Span (OSpan) Task 
consisted of 15 items. Each item had a varying number of 
alternative processing and storage components, where the 
processing components were always followed by a storage 
component. In the OSpan Task, the processing component 
consisted of a mathematical equation (e.g., “(2 × 2) + 1 
= 5”) that was followed by the storage component, a let-
ter. For each set of processing and storage stimuli, subjects 
had to judge whether the mathematical equation was correct 
and then memorize the letter. In total, there were 15 items 
presented across 3 blocks, and the item sizes varied from 3 
to 7 sets of stimuli. Each item size was randomly presented 
once in each of the 3 blocks. The primary outcome measure 

Table 2   Description of the cognitive tasks included in the current study

Task Type Task Name Description

Common WM 
Tasks in fMRI 
Studies

Delayed match-to-sample n-back task (NB-DMS) Tests working memory through delayed matching of samples 
with added n-back complexity.

Continuous delayed response n-back (NB-CDR) Measures continuous working memory performance with 
delayed responses under n-back conditions.

Sternberg item recognition paradigm (SIRP) Assesses memory for a list of items by having participants 
indicate whether a probe was in a previously seen list.

Visual item recognition paradigm (VIRP) Evaluates visual memory by requiring identification of previ-
ously presented visual items.

AX-Continuous performance test (AX-CPT) A measure of sustained attention and working memory where 
participants respond to target sequences presented in a 
stream of letters.

Change detection tasks (CD) Assesses the ability to detect changes to an array of visual 
stimuli after a brief interruption.

Self-ordered working memory/pointing task (SOT) Evaluates working memory through self-generated sequences 
of responses in a spatial array.

Operation Span Task (OSPAN) Combines memory for a sequence of verbal items with a 
concurrent processing task (solving math operations).

Symmetry Span Task (SSPAN) Tests working memory by requiring recall of sequences of 
spatial locations interspersed with symmetry judgments.

PennCNB Tasks Motor praxis (MPRAXIS) Measures motor speed and precision through task-oriented 
motor movements.

Penn facial memory delayed (CPFD) Tests recognition memory for faces, including the ability to 
remember faces over time (D for delayed).

Penn number/letter continuous performance test (PCPTNL) A task to assess sustained and selective attention by monitor-
ing for specific sequences of numbers or letters.

Penn abstraction, inhibition, and WM (AIM) Evaluates the ability to abstract concepts, inhibit responses, 
and utilize working memory.

Visual object learning delayed (SVOLTD) Assesses learning and memory for visual objects, including 
retention over a delay (D for delayed).

Digit symbol substitution task (DIGSYM) Measures speed and accuracy of digit-symbol coding under 
timed conditions.

Finger-tapping task (FTAP) Assesses motor speed through repetitive finger tapping.
WASI-II Tasks Matrix Reasoning (WASI-Matrix) Tests non-verbal abstract problem solving, logical reasoning, 

and pattern recognition.
Vocabulary (WASI-Verbal) Measures word knowledge and verbal concept formation.
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was the Partial Unit Score (OSpan PU), which reflects the 
proportion of correctly recalled letters across trials.

Symmetry span (SSpan)  The Symmetry Span (SSpan) Task 
consisted of 12 items. Each item had a varying number of 
alternative processing and storage components, where the 
processing components were always followed by a storage 
component. In the Symmetry Span Task, the processing 
component consisted of a figure that was followed by the 
storage component, a random colored cell in a 4 × 4 grid. 
For each set of processing and storage stimuli, subjects had 
to judge whether the figure was symmetrical and then mem-
orize the position of the colored cell in the 4 × 4 grid. In 
total, there were 12 items presented across 3 blocks, and the 
item sizes varied from 2 to 5 sets of stimuli. Each item size 
was randomly presented once in each of the 3 blocks. The 
primary outcome measure was the Partial Unit Score (SSpan 
PU), representing the proportion of correctly recalled loca-
tions in sequence.

AX continuous performance test (AXCPT)  The AX Continu-
ous Performance Test (AXCPT) task consisted of 20 trials 
in each run. Each trial consisted of two stimuli: a cue and 
a probe. Cues were either the letter A (A-cue) or any other 
letter except X (collectively, B-cues), while probes were 
either the letter X (X-probe) or any other letter except A 
(collectively, Y-probes). For each trial, subjects pressed a 
button to indicate if the cue-probe combination was the tar-
get (AX) or a non-target (any other combination). Stimuli 
were presented for 500 ms, and the delay between cue and 
probe was randomly jittered from 2–4 s (mean of 3 s). The 
ITI was randomly jittered from 4–6 s (mean of 5 s). Each 
run of the task consisted of 70% AX trials, 10% BX trials, 
10% AY trials, and 10% BY trials. The primary outcome 
measure was AXCPT d′-Context (Gonthier et al., 2016), a 
signal detection measure quantifying the ability to discrimi-
nate between AX and BX trials.

Change detection  Trials consisted of a target and probe 
presentation. Targets were two, four, six, or eight colored 
squares (red, green, blue, yellow, white, or black; no color 
appeared more than twice in any target), presented in one of 
four quadrants around a fixation crosshair. Stimuli were bal-
anced across all quadrants, ensuring even distribution. The 
probe appeared in the same location as a previous stimulus, 
and participants indicated whether the probe’s color matched 
the original square’s color. Targets were presented for 500 
ms, followed by a 1 s delay. Probes were presented for 5 s, 
during which participants made a target/non-target response. 
The ITI was 1 s. The primary outcome measure was d′.

N‑Back (Continuous Delayed Response; NBCDR)  The Con-
tinuous Delayed Response N-Back Task (NBCDR) involved 

presenting single stimuli (numbers 1–4) at fixed locations 
within a diamond arrangement. Each stimulus was displayed 
for 500 ms, followed by a 1,500 ms delay. A number at the 
top of the screen indicated the condition (1-back or 2-back). 
Participants responded by pressing a corresponding button 
on a response pad when the stimulus location matched that 
of the item presented one or two trials earlier. The primary 
outcome measure was NBCDR Accuracy, the proportion of 
correct responses across all conditions.

N‑Back (Delayed Matching‑to‑Sample; NBDMS)  In the 
Delayed Match-to-Sample N-Back Task (NBDMS), single 
non-vowel letters were presented for 2 s each, followed by a 
2 s interstimulus interval (ISI), in blocks of 10 trials. Each 
block was followed by a 7 s delay before a cue indicated 
whether it was a 1-back or 2-back block. During these condi-
tions, participants pressed a button when the letter matched 
the one presented one or two trials previously. Each block 
contained 50% match trials and 50% non-match trials. Half 
of the nonmatch trials were lure trials, which contained the 
target but were not accurately 1 or 2 trials back for the 1- or 
2-back conditions, respectively. The primary outcome meas-
ure was NBDMS Accuracy, the proportion of correctly iden-
tified matches across all conditions.

Sternberg item recognition paradigm (SIRP)  The Sternberg 
Item Recognition Paradigm (SIRP) consisted of trials that 
included a target and probe presentation. Target sets con-
tained two, four, six, or eight uppercase consonants, dis-
played for 4 s, followed by a 3–7 s jittered delay (mean of 5 
s). A probe letter was then presented for 4 s, and participants 
indicated whether the probe matched any of the target items. 
Half of the nonmatch trials (25% of total trials) were recent 
probes, meaning the probe was from the previous trial but 
not the current trial. Each run consisted of 16 trials (4 of 
each load in pseudorandomized order). The primary out-
come measure was d′.

Visual item recognition paradigm (VIRP)  The Visual Item 
Recognition Paradigm (VIRP) followed the same design as 
the SIRP except that 1) only two, four, or six stimuli are used 
in each target array; 2) the stimuli are three-dimensional 
drawings of objects (identical to the SOT task, described 
below); and 3) there are 21 trials per run (seven of each load, 
in pseudorandom order). The recent probe manipulation was 
identical to the SIRP. The primary outcome measure was d′.

Self‑ordered working memory task (SOT)  The Self-Ordered 
Pointing Task (SOT) involved 24 trials, each lasting 72 s 
and consisting of eight steps (9 s each), with an 8 s delay 
between trials. Participants viewed a 3 × 3 grid of eight 
three-dimensional objects and a fixation cross and were 
required to select each stimulus once and only once per 
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trial. Stimuli were randomly rearranged after each selec-
tion. In each trial, this continued until all eight objects were 
chosen. The primary outcome measure was SOT Capacity 
Score (k), which estimates participants’ working memory 
capacity (Van Snellenberg et al., 2014a, b).

Neurocognitive tasks from the PennCNB battery

Penn continuous performance test ‑ Number letter 
(PCPT‑NL)  The Penn Number/Letter Continuous Perfor-
mance Test (PCPT-NL) is a measure of visual attention and 
vigilance. Participants viewed a sequence of red vertical 
and horizontal lines that flashed within a digital numeric 
frame (resembling a digital clock). Their task was to press 
the spacebar whenever the displayed lines formed complete 
numbers or complete letters. The task consisted of two con-
ditions: one where participants identified numbers, and one 
where they identified letters, each lasting 3 min. Each stimu-
lus flashes for 300 ms and a blank page is then displayed for 
700 ms, giving the participant 1 s to respond to every trial. 
The primary outcome measure was d’.

Abstraction, inhibition, and memory (AIM)  The Penn 
Abstraction, Inhibition, and Memory (AIM) Task assessed 
concept formation and working memory through a catego-
rization task. Participants were shown a single object and 
asked to determine which of two object pairs it best matched, 
based on color or shape. In the working memory condition, 
the object disappeared briefly before the choice was pre-
sented, requiring participants to maintain it in memory. 
The primary outcome measure was the AIM Sum Score for 
Working Memory Trials, reflecting overall task performance 
across these trials.

Penn facial memory test ‑ delayed (CPFD)  The Penn Facial 
Memory Test (CPFD) assessed delayed recognition memory 
for faces. In the learning phase, participants were shown 20 
unfamiliar faces to remember. In the delayed recall phase, 
they were presented with 40 faces, consisting of the origi-
nal 20 and 20 novel distractor faces. Participants rated their 
confidence in recognizing each face using a 4-point scale 
("definitely yes"to"definitely no"). The primary outcome 
measure was d’.

Short visual object learning test ‑ delayed (SVOLT‑D)  The 
Short Visual Object Learning Test (SVOLT-D) was designed 
as a spatial analog to the California Verbal Learning Test, 
assessing visual learning and memory. Participants initially 
viewed 10 three-dimensional Euclidean shapes in a study 
phase. Later during the delayed recall, they were presented 
with 20 shapes—a combination of previously studied shapes 
and novel distractors—and indicated whether each had been 
seen before. The primary outcome measure was d’.

Digit symbol substitution task (DIGSYM)  The Digit Symbol 
Substitution Task (DIGSYM) assessed processing speed 
and cognitive efficiency (Knowles et al., 2012). Participants 
referred to a legend linking digits (1–9) to specific symbols 
and determined whether a displayed digit-symbol pair was 
correct. A total of 54 trials were presented randomly, and 
participants had 1.5 min to complete as many trials as pos-
sible. The primary outcome measure was the Digit Symbol 
Score, reflecting the number of correct responses within the 
time limit.

Motor praxis test (MPRAXIS)  The Motor Praxis Test 
(MPRAXIS) measured sensory-motor coordination and 
computer mouse proficiency. Participants were required 
to move the cursor over a shrinking green box and click 
on it as it appeared in different screen locations. This task 
was included to measure motor skill and proficiency with a 
computer mouse before proceeding to other computerized 
tasks. The primary outcome measure was MPRAXIS Trial 
2 Median Reaction Time, quantifying the median time taken 
to respond to the shrinking target.

Finger‑tapping task (FTAP)  The Finger-Tapping Task 
(FTAP) assessed manual dexterity and motor speed. Par-
ticipants tapped the space bar as many times as possible in 
10-s trials, alternating between the dominant and nondomi-
nant hands. The task included five trials per hand, with two 
additional 5-s practice trials before the test. The primary 
outcome measure was the FTAP Total Score, which summed 
the total number of taps across both hands.

General cognitive ability

Wechsler abbreviated scale of intelligence ‑ second edition 
(WASI‑II)  The WASI-II was administered as an estimate of 
general cognitive ability. Two subtests were used: Vocabu-
lary T-Score (WASI Verbal) and Matrix Reasoning T-Score 
(WASI Matrix).

Study procedures

All procedures were approved by the Stony Brook Univer-
sity Institutional Review Board, and all individuals provided 
written informed consent prior to their participation in the 
study. Participants completed the cognitive task battery in 
two sessions lasting less than 2 h each. The placement of 
tasks in each session, as well as the order of tasks within 
sessions, was pseudorandomized across participants. Tasks 
within the PennCNB were presented in a fixed order (in the 
order shown in Table 2), and two subscales of the WASI-II 
were conducted during a break in the PennCNB tasks that 
occurred between the AIM and SVOLT-D (Table 2). All 
other tasks and the block of tasks comprising the PennCNB 
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and WASI-II were ordered according to a Latin squares 
design, except in cases where the Latin square could not pro-
duce two sessions of less than 2 h (i.e., some task orderings 
would produce one session of greater than two hours, and so 
were excluded). Participants were offered an optional 5-min 
break every 30 min or less, which was included in the 2-h 
session time limit. Participants were also given the oppor-
tunity to practice each of the WM tasks until they indicated 
that they fully understood the task instructions immediately 
prior to beginning each task. All of the WM tasks were pre-
sented using Presentation software (Neurobehavioral Sys-
tems, Inc., Berkeley, CA), with the exception of the two 
complex span tasks, which were presented in E-Prime 3.0 
(Psychology Software Tools, Inc., Pittsburgh, PA) (Oswald 
et al., 2015).

Data preparation

Outlier analysis

We adopted a systematic, a-priori approach to handle outli-
ers for the cognitive measures. Specifically, we identified 
univariate outliers as those with an absolute z-score greater 
than 3.5, indicating a distance of more than 3.5 standard 
deviations from the mean. A total of 65 univariate outliers 
were flagged; however, these univariate outliers were not 
entirely removed from the analysis. Instead, only their spe-
cific task scores that deviated from the mean more than 3.5 
standard deviations were regarded as missing and excluded 
in later analyses, allowing us to retain as much usable data 
as possible while minimizing potential bias from extreme 
values. Re-running the analyses with the outliers included 
revealed no meaningful changes to the findings, suggest-
ing that this approach did not materially alter our results. 
Raw results with and without the outliers are available at 
https://​osf.​io/​cvfta/. No multivariate outliers were excluded 
from the analysis, instead, robust estimations were applied 
to account for the violation of multivariate normality (see 
“Data analysis”). During data residualization (see “Residu-
alization”), participants who failed to complete the FTAP 
and MPRAXIS tests in Penn tasks were excluded from 
further analyses because individual scores on these two 
tasks were used to residualize subjects’ performance on all 
other selected tasks. As a result, 38 subjects were excluded 
because of their missing FTAP and MPRAXIS scores, 
reducing the sample size from 608 to 570.

Residualization

Before the EFA, we conducted a data residualization process 
to control for motor skill influence associated with different 
input devices across different tasks (keyboard vs. mouse). 
In general, this controls for the effects of covariate variables 

when examining the relationship between other target vari-
ables of interest. In tasks where participants respond via 
distinct motor modalities, differences in motor skills can 
inadvertently influence performance on cognitive tasks. 
Therefore, by using performance on the Finger Tapping 
(FTAP; keyboard-based) and Mouse Praxis (MPRAXIS; 
mouse-based) tasks as covariates, we attempted to statisti-
cally remove (“residualize”) any variance in these cogni-
tive measures due to motor demands prior to examining the 
intercorrelations among WM tasks.

Specifically, each cognitive measure that was admin-
istered under mouse input (all 5 Penn Tasks other than 
MPRAXIS and FTAP themselves) were regressed (residu-
alized) on MPRAXIS to obtain scores that were free from 
mouse-based motor skill influence. Conversely, all nine key-
board-based WM measures were regressed (residualized) on 
FTAP to obtain scores that were free from keyboard-based 
motor influence. The two WASI tests were not included for 
the residualization process as these were traditional paper-
and-pencil measures. In total, 14 measures were residual-
ized. By using these residualized scores in the later factor 
analyses, we could more accurately identify underlying WM 
constructs rather than capturing “noise” variance from motor 
abilities from different input types.

Data analysis

The 14 residualized variables for 570 subjects were included 
in the following analyses. A series of EFAs was conducted 
to investigate the factor structure of WM. Full information 
maximum likelihood estimation (FIML) was used to cal-
culate the covariance matrix for the EFAs to account for 
missing values. The sample of responses on the 14 measures 
did not follow a multivariate normal distribution, according 
to the Henzer-Zirkler’s test (Henze & Zirkler, 1990): HZ = 
1.08, p <.001. Thus, weighted least square (WLS) estimation 
in all EFA analyses so that the non-normal distributions of 
the items were accounted for, and the oblique (“oblimin”) 
rotation was used so that the latent factors from the EFAs 
were all correlated.

Prior to the EFAs, the assumption of sampling ade-
quacy was checked using the Kaiser-Meyer-Olkin (KMO) 
sampling adequacy test. Both overall and variable-level 
MSAs were estimated. Based on the KMO results, the 
current sample of 14 measures was an adequate sample 
of manifest variables for latent variable analyses. The 
overall MSA (measures of sampling adequacy) was 0.87, 
and variable-level MSAs ranged from 0.79 to 0.93. No 
arbitrary cut-off was determined but MSAs larger than 
0.7 are considered more than “middling” (Kaiser & Rice, 
1974). A parallel analysis (Horn, 1965) was conducted to 
estimate the number of potential factors to be extracted. 
The eigenvalues from observed data were compared to 

https://osf.io/cvfta/
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the average of 1,000 eigenvalues from random simula-
tions of datasets with the same size and structure as the 
observed data.

For all the EFA solutions, a variety of indicators were 
evaluated to determine the proper factor solution, includ-
ing the factor structures, fit indices such as Tucker Lewis 
Index of factoring reliability (TLI) and root mean square 
error of approximation (RMSEA), cumulative variances 
explained by the solution, factor loadings, and extracted 
communalities for observed variables (h2). Cumulative 
variances are the estimated proportion of variances that 
the EFA solution can explain in the data. Factor load-
ings represent how well the items reflect the latent con-
struct, with a standardized loading >.30 being acceptable. 
Extracted communalities for items represent how much 
of the variance in the item is attributed to the target fac-
tor solution, with higher communalities being preferred.

After an EFA solution that identifies the subconstructs 
underlying WM performance was determined, a series of 
regression analyses were conducted in structural equa-
tion models (SEMs). In these SEM models, the latent 
factors representing the identified subconstructs were 
used as predictors to subjects’ intellectual testing per-
formance, measured by the WASI-II verbal and matrix 
reasoning subtests. Each of the latent subconstructs was 
assumed to uniquely explain the variances in subjects’ 
performance on WASI-II verbal and matrix reasoning 
subtests. The regression coefficients, as well as the over-
all goodness of fit of the SEM models, were evaluated. 
The fit of each model is evaluated with the following 
set of test statistics and fit indices: χ2, Comparative Fit 
Index (CFI), Root Mean Square Error of Approximation 
(RMSEA), Standardized Root Mean Square Residual 
(SRMR), and Akaike Information Criterion (AIC). The 
criteria for an “acceptable” model fit were based on the 
following cut-off values, recommended by Schreiber et al. 
(2006) and Kline (2016): p >.05, χ2/df ≤ 3, CFI ≥.95, 
RMSEA ≤.06, SRMR ≤.08. For AIC there is no cutoff 
value; lower values indicate better fit. Robust maximum 
likelihood estimation was used for all SEM models, such 
that chi-square statistics and all corresponding fit indices 
were corrected using the Huber-White correction (Ros-
seel, 2012). Similar to the EFAs, all missing values were 
handled via FIML estimation.

Results

Summary statistics for the primary 18 measures (not 
residualized) are reported in Table 3. The correlation 
matrix of the residualized measures is reported in Table 4.

Exploratory factor analysis

The result of the parallel analysis indicated that a three-fac-
tor solution was optimal (Fig. 3). Hence, a 3-factor, oblique, 
weighted least square EFA was performed. The findings from 
this initial EFA suggested that a three-factor model explains 
36% of the total variance across all 14 residualized measures, 
with a Tucker-Lewis Index (TLI) of.87 and a Root Mean 
Square Error of Approximation (RMSEA) of.063, 90% CI 
[.052,.073].

The factor structure revealed by this analysis (EFA1) is 
presented in Table 5, demonstrating that most of the WM 
measures loaded highly on the first factor. The two n-back 
tasks were predominantly loaded onto the second factor, while 
the AIM measure was uniquely loaded onto the third factor. 
Among the 14 measures, OSpan did not load well on any of 
the three factors, with standardized factor loadings ranging 
from 0.03 to 0.25. Standardized factor loadings and the cor-
relations among factors are presented in Table 5. All factor 
loadings <.3 were omitted from the table.

Given concerns about the third factor, where only the AIM 
was loaded significantly with a loading close to 1, and con-
sidering the low loading of the OSpan measure, a 4-factor 
EFA solution was also conducted (EFA2). Results of this solu-
tion indicated that the 4-factor solution accounted for 40% of 
the total variance, along with improved fit indices: TLI =.95 
and RMSEA =.04, 90% CI [.026,.053]. Similar to EFA1, the 
majority of the measures were loaded onto the first factor. 
However, the two complex span measures were distinctively 
loaded onto a separate factor (F2), and the n-back measures 
onto another (F3), illustrating a clearer distinction among the 
task types. The AIM measure was still loaded onto its own 
factor.

Based on the results from EFA1 and EFA2, the AIM was 
excluded from the selected measures, and a 3-factor oblique 
solution was retained. This was confirmed by another parallel 
analysis of the 13 remaining measures. In this solution (EFA3), 
the 3-factor structure accounted for 36% of the total variance, 
with TLI =.96 and RMSEA =.038, 90% CI [.024,.052]. The 
factor structure was similar to EFA2 (Table 6), except the 
fourth factor and AIM were no longer included. The three 
factors were moderately correlated, with correlations ranging 
from 0.4 to 0.53.

Given the 3-factor structure, we interpret the first factor 
with the majority of measures except n-back and Span tasks as 
a “Storage” factor, the second factor with the two span tasks as 
an “Executive Attention” factor, and the third factor with the 
two n-back tasks as an “Updating” factor.
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Regression analyses using structural equation 
models

Based on the EFA results, a series of Structural Equation 
Models (SEMs) were specified to examine the relationship 
between the WM factors and intelligence. More specifically, 
the three factors identified in the EFAs were used to predict 
scores on a two-subtest version of the WASI-II (Wechsler, 
2011), which consisted of a verbal subtest (WASI-Verbal) 
and a matrix reasoning subtest (WASI-Matrix). In each 
of the following SEMs, the 3 WM components (Storage, 
Executive Attention, Updating) were specified as predictor 
variables, and the two intelligence measures (WASI-Verbal, 
WASI-Matrix) were specified as outcome variables.

According to the EFA result, the Storage factor consists 
of most of the selected measures and, conceptually, may 
stand as the factor that taps more cognitive processes and 
therefore better accounts for individual differences in WM 
compared with the other two factors. Thus, for the first SEM, 
all 3 WM components were included, but only Storage was 
specified as a predictor of intelligence (Fig. 4). Results indi-
cated an acceptable model fit: χ2(86) = 197.65, p <.001; CFI 

=.92, TLI =.91; RMSEA =.05, 90% CI [.04,.06]; SRMR = 
0.04; AIC = 22318.66, BIC = 22531.6. According to the 
model, the Storage component of WM is a statistically sig-
nificant predictor of both WASI-Matrix (βm =.38, p <.001) 
and WASI-Verbal (βv =.21, p <.001). Overall, the Storage 
component explained approximately 14% of the variance 
in WASI-Matrix and approximately 4% of the variance in 
WASI-Verbal.

Although in the current factor model, the storage fac-
tor consists of the majority of the selected measures, the 
factor is only moderately correlated with the other two fac-
tors that consist of the WM tasks that are more commonly 
used in cognitive psychology/neuroscience literature. Thus, 
in the second SEM, all three WM factors (Storage, Execu-
tive Attention, and Updating) were included as predictors of 
intelligence (Fig. 5). Results indicated an acceptable model 
fit: χ2(82) = 150.04, p <.001; CFI =.95, TLI =.94; RMSEA 
=.04, 90% CI [.03,.05]; SRMR = 0.04; AIC = 22278.77, 
BIC = 22509.09. In this model, when the Executive Atten-
tion and Updating factors were included, Storage was no 
longer a significant predictor of WASI Matrix (βm = −.06, 
p =.486) or WASI Verbal (βv =.16, p =.088). Instead, both 

Table 3   Descriptive statistics and split-half reliability estimates for the selected measures

Note. Ospan = Operation Span Partial Unit Score; Sspan = Symmetry Span Partial Unit Score; AXCPT = AX Continuous Performance Test 
Context d'; CD = Change Detection d'; NBCDR = N-Back (Continuous delayed response) Accuracy; NBDMS Accuracy = N-Back (Delayed 
Matching-to-Sample) Accuracy; SIRP = Sternberg Item Recognition Paradigm d'; VIRP = Visual Item Recognition Paradigm d'; SOT = Self-
Ordered Working Memory/pointing task Capacity Score; PCPTNL = Penn Continuous Performance Test Number Letter d'; AIM = Abstraction, 
Inhibition, and Memory Sum Score of Working Memory Trials; CPFD = Penn Facial Memory Test (Delayed) d'; DIGSYM = Digit Symbol 
Score; SVOLTD = Short Visual Object Learning Test (Delayed) d'; MPRAXIS = Motor Praxis Test Trial 2 Median Reaction Time; FTAP = 
Finger-tapping task total score; WASI Verbal = Wechsler Abbreviated Scale of Intelligence (2nd Edition) Vocabulary T Score; WASI Matrix = 
Wechsler Abbreviated Scale of Intelligence (2nd Edition) Matrix Reasoning T Score. NA: Not Applicable. Split-half Reliability was not a prop-
erly defined metric for DIGSYM, MPRAXIS, and FTAP. For the two WASI measures, only subtest scores were available and used in the current 
study

Measures N Mean SD Skew Kurtosis Reliability

OSpan 574 0.76 0.21 −0.99 0.41 0.66
SSpan 571 0.64 0.23 −0.59 −0.34 0.62
AXCPT 559 2.38 1.17 −1.34 1.44 0.90
CD 561 1.72 0.78 −0.36 0.27 0.89
NB-CDR 568 0.66 0.28 −0.82 −0.44 0.97
NB-DMS 524 0.84 0.18 −1.73 2.16 0.98
SIRP 558 2.76 0.89 −0.93 1.28 0.87
VIRP 565 1.48 0.72 −0.25 0.15 0.68
SOT 558 5.87 1.38 −1.78 3.05 0.86
PCPTNL 567 3.65 0.77 −0.15 −0.15 0.90
AIM 569 25.10 2.91 −0.78 0.42 0.65
CPFD 552 2.24 0.76 −0.12 −0.17 0.68
DIGSYM 571 55.48 10.44 0.04 −0.11 NA
SVOLTD 568 1.64 0.86 −0.10 −0.53 0.57
MPRAXIS 573 574.21 89.95 1.55 5.15 NA
FTAP 570 112.75 37.34 8.30 94.20 NA
WASI Verbal 577 55.63 10.31 −0.35 0.80 NA
WASI Matrix 577 50.00 9.23 −0.08 0.88 NA
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Executive Attention and Updating were significant predic-
tors of both WASI-Matrix and WASI-Verbal. Overall, the 
model explained approximately 22% of the variance in the 
WASI-Matrix subtest and approximately 10% in WASI 
Verbal.

The results from SEM2 suggest that the relationship 
between the Storage component of WM and intelligence 
may be mediated by Executive Attention and Updating. To 
test this hypothesis, a third SEM was specified to test for 
mediation. In this SEM, Executive Attention and Updating 

Table 4   Correlation matrix for the selected residualized measures

Note. All missing values were pairwisely addressed in the correlation matrix. Non-significant (p >.05) correlations were in bold. Ospan = 
Operation Span Partial Unit Score; Sspan = Symmetry Span Partial Unit Score; AXCPT = AX Continuous Performance Test Context d'; CD = 
Change Detection d'; NBCDR = N-Back (Continuous delayed response) Accuracy; NBDMS Accuracy = N-Back (Delayed Matching-to-Sam-
ple) Accuracy; SIRP = Sternberg Item Recognition Paradigm d'; VIRP = Visual Item Recognition Paradigm d'; SOT = Self-Ordered Working 
Memory/pointing task Capacity Score; PCPTNL = Penn Continuous Performance Test Number Letter d'; AIM = Abstraction, Inhibition, and 
Memory Sum Score of Working Memory Trials; CPFD = Penn Facial Memory Test (Delayed) d'; DIGSYM = Digit Symbol Score; SVOLTD = 
Short Visual Object Learning Test (Delayed) d'; WASI Verbal = Wechsler Abbreviated Scale of Intelligence (2nd Edition) Vocabulary T Score; 
WASI Matrix = Wechsler Abbreviated Scale of Intelligence (2nd Edition) Matrix Reasoning T Score

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OSpan -
SSpan 0.41 -
AXCPT 0.06 0.10 -
CD 0.21 0.38 0.29 -
NB-CDR 0.19 0.30 0.25 0.32 -
NB-DMS 0.13 0.22 0.19 0.32 0.47 -
SIRP 0.23 0.23 0.27 0.40 0.25 0.30 -
VIRP 0.19 0.28 0.29 0.37 0.25 0.24 0.42 -
SOT 0.20 0.32 0.29 0.34 0.27 0.34 0.31 0.41 -
PCPTNL 0.25 0.24 0.26 0.35 0.26 0.27 0.30 0.33 0.31 -
AIM 0.14 0.19 0.12 0.29 0.21 0.18 0.11 0.24 0.20 0.21 -
CPFD 0.04 0.10 0.21 0.15 0.08 0.09 0.20 0.23 0.27 0.19 0.15 -
DIGSYM 0.23 0.30 0.16 0.32 0.20 0.20 0.28 0.30 0.32 0.30 0.23 0.19 -
SVOLTD 0.13 0.28 0.17 0.26 0.17 0.17 0.24 0.24 0.30 0.23 0.16 0.26 0.30 -
WASI Verbal −0.03 0.04 0.14 0.12 0.16 0.23 0.16 0.09 0.14 0.05 0.18 0.15 0.09 0.10 -
WASI Matrix 0.21 0.29 0.15 0.28 0.31 0.27 0.16 0.20 0.23 0.16 0.19 0.05 0.10 0.18 0.11

Fig. 3   Parallel analysis with scree plot for the 14 residualized meas-
ures. Eigenvalues from the observed data were presented in triangles 
and solid lines; average eigenvalues from the 1000 simulations were 

presented in dashed lines. Error bars represent the standard errors of 
the eigenvalues from the simulations
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were both specified as mediators of the relationship between 
Storage and both WASI-Matrix and WASI-Verbal (Fig. 6). 
Results indicated an acceptable model fit: χ2(83) = 151.41, p 
<.001; CFI =.95, TLI =.94; RMSEA =.04, 90% CI [.03,.05]; 
SRMR = 0.04; AIC = 22,278.19, BIC = 22,504.17. The 
results support the hypothesis that Executive Attention and 
Updating fully mediate t6 he relationship between Storage 
and the two WASI measures. Indeed, the regression coeffi-
cients of Storage on WASI-Matrix and Verbal were both not 
significant: βm = −.09, p =.349; βv =.16, p =.109.

Posteriori confirmatory modeling with primary 
and secondary memory as separate factors

In some previous research, such as Unsworth et al. (2014) 
and Robison et al. (2024), primary and secondary memory 
components were distinguished as reflections of separate 
aspects of working memory. Therefore, we conducted addi-
tional analyses to explore a potential 4-factor solution in 
which primary and secondary memory are distinct latent 
variables. In more complex EFA solutions (e.g., a 4-factor 

and a 5-factor solution), each additional factor was effec-
tively driven by a single task (SVOLT-D for the 4-factor 
solution and CPF-D for the 5-factor solution), meaning 
that the extra factors were capturing primarily task-specific 
variance.

Nevertheless, we tested a confirmatory factor model 
specifying two distinct storage components, labeled “Pri-
mary” and “Secondary,” with SVOLT-D and CPF-D forming 
the Secondary (Memory) factor. This 4-factor measurement 
model demonstrated an improved fit compared with an origi-
nal 3-factor CFA model, Δχ2(3) = 13.83, p <.01, with minor 
improvements observed across all fit indices (CFI from.95 
to.96, TLI from.94 to.95, RMSEA from.045 to.041, and 
SRMR from.037 to.034).

To further investigate this structure, we conducted an 
additional SEM analysis (SEM4), specifying Primary 
memory and Secondary memory as separate but correlated 
factors, mirroring the approach used in SEM2, where all 
WM factors predicted WASI-Matrix and WASI-Verbal. The 
results did not reveal any substantive differences (Fig. 7). 
Neither “Primary” factor nor “Secondary” factor was a 

Table 5   The Oblique 3-Factor Exploratory Factor Model (EFA1) and 4-Factor Model (EFA2) on the 14 Residualized WM Measures

PCPTNL = Penn Continuous Performance Test Number Letter d’; AIM = Abstraction, Inhibition, and Memory Sum Score of Working Mem-
ory Trials; CPFD = Penn Facial Memory Test (Delayed) d’; DIGSYM = Digit Symbol Score; SVOLTD = Short Visual Object Learning Test 
(Delayed) d’; Ospan = Operation Span Partial Unit Score; Sspan = Symmetry Span Partial Unit Score; AXCPT = AX Continuous Perfor-
mance Test Context d’; CD = Change Detection d'; NBCDR = N-Back (Continuous delayed response) Accuracy; NBDMS Accuracy = N-Back 
(Delayed Matching-to-Sample) Accuracy; SIRP = Sternberg Item Recognition Paradigm d’; VIRP = Visual Item Recognition Paradigm d’; SOT 
= Self-Ordered Working Memory/pointing task Capacity Score

EFA1 EFA2

Task F1 F2 F3 F1 F2 F3 F4

PCPTNL 0.45 0.40
AIM 0.99 0.96
CPFD 0.52 0.52
DIGSYM 0.50 0.40
SVOLTD 0.51 0.43
OSpan 0.47
SSpan 0.35 0.79
AXCPT 0.40 0.48
CD 0.46 0.38
NBCDR 0.66 0.65
NBDMS 0.57 0.66
SIRP 0.55 0.53
VIRP 0.63 0.61
SOT 0.59 0.53
Proportion Variance 0.19 0.07 0.07 0.17 0.08 0.08 0.07
Cumulative Variance 0.19 0.26 0.33 0.17 0.25 0.33 0.40
Factor Correlations
F2 0.55 - 0.47 -
F3 0.34 0.24 - 0.53 0.40 -
F4 - - - 0.33 0.25 0.25 -
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significant predictor of the two WASI measures (Fig. 7). 
These findings suggest that while distinguishing between 
two storage components may slightly improve model fit at 
the measurement level of a confirmatory model, this dif-
ferentiation does not appear to meaningfully impact their 
predictive relationships with broader cognitive abilities in 
the current dataset.

Discussion

This study aimed to investigate the latent structure of WM 
using a large sample and a comprehensive set of tasks. 
The exploratory factor analysis (EFA) identified a three-
factor model consisting of Storage, Executive Attention, 
and Updating components. Subsequent structural equation 
modeling (SEM) revealed that, although Storage predicts the 
performance of the two measures of intelligence by itself, 
the association was no longer significant after Executive 
Attention and Updating were included in the prediction. 

Executive Attention (complex span tasks) and Updating 
(n-back tasks, NB-CDR and NB-DMS) were moderately 
correlated with each other and with the Storage factor, and 
both factors explained a unique amount of variance in the 
intelligence measures. The three-factor model supports the 
notion that WM is not a unitary construct but rather com-
prises multiple components that contribute uniquely to cog-
nitive performance.

The Storage factor appears to capture a considerable num-
ber of both elementary and higher-order cognitive processes 
that contribute to WM task performance, including measures 
of sustained attention (PCPT-NL, a continuous performance 
test), long-term visual recognition (CPF-D and SVOLT-D), 
processing speed (DIGSYM), context maintenance (AX-
CPT), and short-term or WM capacity (change detection, 
SIRP, VIRP), as well as a complex WM task that likely taps 
a number of these processes (SOT). In contrast, Executive 
Attention appears to require the ability to maintain the iden-
tity and sequential ordering of target items in the face of 
ongoing intra-domain distraction from a concurrent process-
ing task. Updating, measured by n-back tasks, captures the 
ability to revise and refresh information in WM (these are 
the only tasks in our battery that require concurrent addition 
and removal of items from the memory set, without a full 
“reset” of target material), and potentially also the ability 
to temporally tag the contents of WM (so that the correct 
order of stimuli can be maintained) or to resolve interference 
from recent-negative lure trials (although lure trials were 
also included in the SIRP and VIRP tasks).

These results demonstrate that both complex span tasks 
and n-back tasks have unique properties distinct from each 
other and from other WM tasks. Although all three factors 
were relatively highly intercorrelated (r = 0.48–0.65), indi-
cating that there is substantial shared variance across all 
three tasks, when the three factors were considered in a sin-
gle model, only the Updating and Executive Attention fac-
tors had unique shared variance with our measures of intel-
ligence. This suggests that both complex span and n-back 
tasks may have a closer relationship to real-world cognitive 
performance than other WM tasks; while the Storage factor 
is still related to these measures, both n-back and complex 
span tasks can explain that same variance in intelligence, 
while also each contributing unique additional explana-
tory power. This evidence arguably helps cement complex 
span and n-back tasks as the best options for behavioral or 
neuroimaging studies of WM, respectively, at least when a 
closer relationship to measures of intelligence is desired (as 
it arguably would be for most studies of neuropsychiatric 
patient groups, such as schizophrenia). It also suggests that 
investigators might consider using both tasks as behavioral 
measures of WM in their studies to capture fully all of the 
aspects of WM tasks that contribute to real-world intellec-
tual performance.

Table 6   The Oblique 3-Factor Exploratory Factor Model (EFA3) on 
the 13 Residualized WM Measures

PCPTNL = Penn Continuous Performance Test Number Letter d'; 
CPFD = Penn Facial Memory Test (Delayed) d’; DIGSYM = Digit 
Symbol Score; SVOLTD = Short Visual Object Learning Test 
(Delayed) d’; Ospan = Operation Span Partial Unit Score; Sspan = 
Symmetry Span Partial Unit Score; AXCPT = AX Continuous Per-
formance Test Context d’; CD = Change Detection d’; NBCDR = 
N-Back (Continuous delayed response) Accuracy; NBDMS Accuracy 
= N-Back (Delayed Matching-to-Sample) Accuracy; SIRP = Stern-
berg Item Recognition Paradigm d’; VIRP = Visual Item Recognition 
Paradigm d’; SOT = Self-Ordered Working Memory/pointing task 
Capacity Score

F1 F2 F3 h2

PCPTNL 0.42 0.29
CPFD 0.55 0.21
DIGSYM 0.42 0.28
SVOLTD 0.44 0.23
OSpan 0.45 0.24
SSpan 0.82 0.68
AXCPT 0.47 0.25
CD 0.39 0.39
NBCDR 0.65 0.46
NBDMS 0.65 0.45
SIRP 0.50 0.34
VIRP 0.61 0.40
SOT 0.54 0.40
Proportion Var 0.18 0.09 0.09
Cumulative Var 0.18 0.27 0.36
Factor Correlations
F2 0.46 -
F3 0.53 0.40 -
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One particular challenge in interpreting these results is 
regarding the labeling and interpretation of the “Storage” 
factor in the current latent factor models. Because working 
memory tasks are not “process-pure,” naming factors nec-
essarily involves interpretations of the underlying cognitive 
mechanisms. In this study, tasks other than the complex span 
and N-back all loaded onto the same broad factor. Given 
their reliance on maintaining, recognizing, or responding 
to information, a label like Storage or Maintenance may 
best reflect the shared variance among these tasks, though it 
remains clear that multiple processes (attention, speed, long-
term retrieval, short-term storage, etc.) are also involved; for 
example, the digit-symbol substitution task is a relatively 
pure measure of processing speed, while the AX-CPT is 
generally seen as a measure of context maintenance and 
cognitive control. The factor structure we observed may 
be predominantly driven by the unique demands of com-
plex span tasks and N-back tasks, as compared to a specific 
shared feature (e.g., storage) of the other working memory 
and cognitive tasks included in our battery. The Executive 
Attention factor (two complex span tasks) reflects a more 

concentrated requirement to control and manipulate infor-
mation in the face of concurrent processing demands from 
two task components, aligning with longstanding interpre-
tations of complex span measures, while the Updating fac-
tor (two n-back tasks) emphasizes the continuous temporal 
embedding of stimuli, with ongoing rapid partial updating of 
the memory set (in the 2-back condition). Statistically, these 
two-task factors showed high within-factor loadings and 
low cross-loadings, indicating that each pair of tasks shares 
enough unique variance to form a coherent factor despite 
having only two indicators per factor. The relatively larger 
Storage factor, in turn, brings together a broader assortment 
of processes that do not cluster as neatly into smaller, more 
specialized constructs under an exploratory framework.

In a post hoc investigation under the CFA models, we 
observed that this broad Storage factor might, in principle, 
be split into two highly correlated subfactors, likely Primary 
Memory (e.g., short-term maintenance) and Secondary 
Memory (e.g., long-term retrieval processes). Specifically, in 
a more complex, confirmatory model, SVOLTD and CPFD 
tasks could load onto a separate secondary memory factor, 

Fig. 4   The structural regression model that uses only the Storage fac-
tor to predict Wechsler Abbreviated Scale of Intelligence (2nd Edi-
tion) Vocabulary and Matrix Reasoning T Scores (WASI Verbal and 
Matrix). The dashed curve represents the non-significant correlation 
between WASI Verbal and Matrix. PCPTNL = Penn Continuous Per-
formance Test Number Letter d'; CPFD = Penn Facial Memory Test 
(Delayed) d'; DIGSYM = Digit Symbol Score; SVOLTD = Short 
Visual Object Learning Test (Delayed) d'; AXCPT = AX Continu-

ous Performance Test Context d'; CD = Change Detection d'; SIRP 
= Sternberg Item Recognition Paradigm d'; VIRP = Visual Item Rec-
ognition Paradigm d'; SOT = Self-Ordered Working Memory/point-
ing task Capacity Score; Ospan = Operation Span Partial Unit Score; 
Sspan = Symmetry Span Partial Unit Score; NBCDR = N-Back 
(Continuous delayed response) Accuracy; NBDMS Accuracy = 
N-Back (Delayed Matching-to-Sample) Accuracy. All 13 manifests 
were residualized measures



Cognitive, Affective, & Behavioral Neuroscience	

improving overall model fit compared with a confirmatory, 
three-factor model, Δχ2(3) = 13.83, p <.01. This is partially 
aligned with other findings, such as Unsworth et al. (2014) 
and Robison et al. (2024).

However, these two sub factors were still strongly cor-
related (r =.75), suggesting they function quite similarly in 
this dataset, and in the EFA they did not fully separate with-
out each forming a single-task factor. This pattern implies 
that more extensive task coverage or targeted designs may be 
needed to produce a stable distinction between primary and 
secondary memory under exploratory approaches. Further-
more, based on the confirmatory measurement model with 
a 4-factor solution (“Primary,” “Secondary,” “Executive,” 
and “Update”), a SEM model (SEM4) similar to SEM2 was 
estimated, in which the four correlated factors predicted the 
two WASI measures. In SEM4, neither Primary memory 
nor Secondary memory emerged as a significant predictor 
of the two WASI measures. Compared with previous simi-
lar research such as Robison et al. (2024), although defined 
by different sets of task measures, the correlation between 

the Primary and Secondary memory factors was higher (r 
=.75 compared with.54 in the measurement model of Robi-
son et al.). This higher correlation was also confirmed by 
an additional SEM in which the two factors were specified 
as sperate predictors of the WASI measures. None of the 
regression coefficients were significant, indicating that nei-
ther primary memory nor secondary memory could explain 
a meaningful portion of variances in general cognitive abili-
ties (reflected by WASI-Matrix and WASI-Verbal). From a 
theoretical standpoint, it suggests that although they can be 
distinguished, these two potential subfactors of “Storage” 
may overlap substantially in the current data and therefore 
did not explain unique variances in intelligence.

In summary, our results reinforced the idea that WM is 
multifaceted. Specifically, the current results align with 
previous research showing that complex span and n-back 
tasks measure different aspects of WM. The moderate 
correlation between the Executive Attention and the 
Updating factor in both the EFA and the SEM models 
suggests that complex span tasks and n-back tasks do 

Fig. 5   The structural regression model with all three factors predict-
ing Wechsler Abbreviated Scale of Intelligence (2nd Edition) Vocab-
ulary and Matrix Reasoning T Scores (WASI Verbal and Matrix). 
The dashed curve represents the non-significant correlation between 
WASI Verbal and Matrix. The dashed arrows represent the non-sig-
nificant structural regression coefficients of Storage to the two WASI 
measures. PCPTNL = Penn Continuous Performance Test Number 
Letter d'; CPFD = Penn Facial Memory Test (Delayed) d'; DIGSYM 
= Digit Symbol Score; SVOLTD = Short Visual Object Learning 

Test (Delayed) d'; AXCPT = AX Continuous Performance Test Con-
text d'; CD = Change Detection d'; SIRP = Sternberg Item Recog-
nition Paradigm d'; VIRP = Visual Item Recognition Paradigm d'; 
SOT = Self-Ordered Working Memory/pointing task Capacity Score; 
Ospan = Operation Span Partial Unit Score; Sspan = Symmetry Span 
Partial Unit Score; NBCDR = N-Back (Continuous delayed response) 
Accuracy; NBDMS Accuracy = N-Back (Delayed Matching-to-Sam-
ple) Accuracy. All 13 manifests were residualized measures
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not tap into the same set of cognitive processes, partially 
aligned with Kane et al. (2007) and Redick & Lindsey 
(2013). This distinction between Executive Attention 
and Updating provides further evidence for the multifac-
eted nature of WM, supporting theories that propose a 
domain-general executive control mechanism alongside 
domain-specific processes. Furthermore, the results 
from the SEM models indicated that, although the Stor-
age factor comprising a range of common WM and other 
cognitive tasks was significantly associated with WASI 
performance, the association was no longer significant 
when Executive Attention and Updating were present in 
the model. Specifically, the relationships between Storage 
and the two WASI subtests were fully mediated by Execu-
tive Attention and Updating (the complex span tasks and 
the n-back tasks, correspondingly).

Caveats and limitations

While this study provides valuable insights into the struc-
ture of WM, several limitations should be noted. The 
sample consisted of undergraduate students, which may 
limit the generalizability of the findings to other popula-
tions. Specifically, in the current sample, it was observed 
in the sample that the correlation between the two WASI 
subtests was low (r =.11, p <.01), indicating that for the 
current sample of participants, their performance on ver-
bal reasoning and performance on matrix reasoning was 
only weakly related. This correlation was far lower than 
what was reported by the WASI-II manual, where all 
of the subtests correlated at a least at a moderate level, 
ranged from 0.4 s to 0.7 s. Future research should include 

Fig. 6   The structural regression model using Executive Attention 
and Updating factors as mediators of the relationship between Stor-
age factor and Wechsler Abbreviated Scale of Intelligence (2nd Edi-
tion) Vocabulary and Matrix Reasoning T Scores (WASI Verbal and 
Matrix). The dashed curve represents the non-significant correlation 
between WASI Verbal and Matrix. The dashed arrows represent the 
non-significant structural regression coefficients of Storage to the 
two WASI measures. PCPTNL = Penn Continuous Performance Test 
Number Letter d'; CPFD = Penn Facial Memory Test (Delayed) d'; 
DIGSYM = Digit Symbol Score; SVOLTD = Short Visual Object 

Learning Test (Delayed) d'; AXCPT = AX Continuous Performance 
Test Context d'; CD = Change Detection d'; SIRP = Sternberg Item 
Recognition Paradigm d'; VIRP = Visual Item Recognition Paradigm 
d'; SOT = Self-Ordered Working Memory/pointing task Capacity 
Score; Ospan = Operation Span Partial Unit Score; Sspan = Symme-
try Span Partial Unit Score; NBCDR = N-Back (Continuous delayed 
response) Accuracy; NBDMS Accuracy = N-Back (Delayed Match-
ing-to-Sample) Accuracy. All 13 manifests were residualized meas-
ures
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more diverse samples and/or improved sampling of tasks 
to validate and extend these findings. Also, psychometric 
network modeling of the WM measures could help extend 
the current latent factor approach on the WM tasks and 
measures by relying on fewer common-cause premises to 
illustrate the intercorrelations (positive manifold) among 
the cognitive measures using partial correlation networks 
(Epskamp et al., 2018). Lastly, longitudinal studies could 
also examine how these WM components develop over 
time, and their stability across different contexts.

Conclusions

This study contributes to our understanding of the com-
plex nature of WM by identifying distinct components that 
predict cognitive performance. The findings emphasize the 
importance of considering multiple WM subconstructs in 
research and clinical practice, and suggest that complex 
span and n-back tasks may be uniquely well-suited to 

capture aspects of WM that are related to intelligence. By 
recognizing the latent structure of WM based on statisti-
cally and conceptually reliable and valid measures, we can 
better understand individual differences in cognitive abili-
ties and develop more effective interventions for cognitive 
impairments.

From a practical perspective, researchers examining 
WM should be aware that different tasks can emphasize 
distinct cognitive components. For rigorous modeling of 
WM’s structure, it is advantageous to include multiple 
tasks within each theoretical subcomponent, no matter 
whether the goal is to partial out certain processes or iden-
tify a comprehensive metric of WM. Future studies could 
replicate these findings with additional tasks specifically 
designed to distinguish among types of storage, as well 
as expand the range of executive attention and updating 
measures.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​3758/​s13415-​025-​01310-3.

Fig. 7   The structural regression model predicting Wechsler Abbrevi-
ated Scale of Intelligence (2nd Edition) Vocabulary and Matrix Rea-
soning T Scores (WASI Verbal and Matrix) with “Storage” being sep-
arated into two confirmatory factors (“Primary” and “Secondary”). 
The dashed curve represents the non-significant correlation between 
WASI Verbal and Matrix. The dashed arrows represent the non-sig-
nificant structural regression coefficients of Storage to the two WASI 
measures. PCPTNL = Penn Continuous Performance Test Number 
Letter d'; CPFD = Penn Facial Memory Test (Delayed) d'; DIGSYM 

= Digit Symbol Score; SVOLTD = Short Visual Object Learning 
Test (Delayed) d'; AXCPT = AX Continuous Performance Test Con-
text d'; CD = Change Detection d'; SIRP = Sternberg Item Recog-
nition Paradigm d'; VIRP = Visual Item Recognition Paradigm d'; 
SOT = Self-Ordered Working Memory/pointing task Capacity Score; 
Ospan = Operation Span Partial Unit Score; Sspan = Symmetry Span 
Partial Unit Score; NBCDR = N-Back (Continuous delayed response) 
Accuracy; NBDMS Accuracy = N-Back (Delayed Matching-to-Sam-
ple) Accuracy. All 13 manifests were residualized measures
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