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Abstract

This paper examines whether general intelligence (g) factors derived from different test batteries are
equivalent. There are three views regarding the equivalency of g-factors: (1) “indicator indifference” claims
that test content is irrelevant as long as g loadings are identical and that single tests can be adequate
indicators of g; (2) “complete dependence on test composition” claims that general factors are completely
dependent on the tests from which they are extracted; and (3) an intermediate stance that emphasizes the
importance of the diversity and comprehensiveness of cognitive test batteries from which g is obtained.
The present study evaluates these competing views by analyzing g-factor correlations across all com-
binatorically possible combinations of subtests from the Woodcock—Johnson Tests of Cognitive Abilities
V. Results showed strong correlations among g-factors across both one-factor and hierarchical models,
increasing with the number of subtests or broad abilities included. Most g-factors closely matched the
g-estimate obtained from all available subtests (r > .9). Low correlations were mainly tied to the
overrepresentation of processing speed (Gs) in small test sets, highlighting the impact of content coverage.
Overall, results support the intermediate view: reliable g-estimates require broad, balanced batteries
covering at least three broad abilities.

Keywords
Woodcock—Johnson intelligence/cognition, intelligence models intelligence/cognition, factor
analysis measurement, general factor of intelligence

Introduction

Are all general factors created equal? This is arguably the second longest-standing controversy in
the history of intelligence research, following closely behind debates surrounding the interpre-
tation of the general factor, g. Broadly speaking, there are three main perspectives on this issue.
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Perspective I: Indifference of the Indicator

The first perspective was offered by Charles Spearman, the discoverer of g. His two-factor theory
differentiated g, a factor common to performance on all mental tests, from s-factors, which are test-
specific. Spearman hypothesized that the general factor is “measuring something analogous to an
‘energy’; that is to say, it is some force capable of being transferred from one mental operation to another
different one” (Spearman, 1927, p. 414). If g truly functions like a transferable energy, then the measure
used (i.e., the test battery) is no more significant than the type of thermometer used for body temperature.
This conceptualization aligns with a realist interpretation of latent variables, which holds that a latent
variable reflects a real entity independent of its measurement (Borsboom et al., 2003). Spearman called
this notion the indifference of the indicator, proposing that the particular tests used to extract g are
irrelevant, so long as they require mental effort. This assumption of indicator indifference is sometimes
directly applied in scientific studies by using only a single, highly g-loaded test to approximate the
general factor. In most cases, nonverbal reasoning tests such as Raven’s Progressive Matrices are used,
since they are assumed to be the best single estimates of g (e.g., Jensen, 1998), yet in other instances,
vocabulary tests—reflecting comprehension-knowledge (Gey—are used as a direct proxy for general
intelligence (e.g., Li & Kanazawa, 2016).

Vernon (1989) examined the proposed indifference of the indicator based on test battery
intercorrelations. He found that the g-factor extracted from a battery of reaction time tests
correlated almost as highly with g-factors extracted from a psychometric battery measuring
intelligence as the verbal and performance factor scores from the same intelligence battery
correlate with one another (i.e., ranging from r = .26 to .69). According to Vernon, this provides
“substantial support for the notion of the indifference of the indicator and for the generality of g”
(p. 804). Because RT and IQ batteries do not overlap in content, he attributed the correlations
among the resulting g-factors to the generality of g and as evidence for the indifference of the
indicator. Moreover, he argued that the similarity in the magnitude of correlation across in-
struments supports their interchangeability as proxies of g. That is, under this approach, the
correlation between two different indicators of g does not need to be perfect in order to establish
that they are functionally equivalent indicators of g. Instead, it is sufficient that the correlation
between A (e.g., reaction time) and B (IQ) is very similar in magnitude to the correlation between
C (verbal 1Q) and D (performance 1Q). A more restrictive approach states that “ideally,
equivalence between g-factors would be demonstrated by having g-factor scores or loadings that
are statistically indistinguishable” (Major et al., 2011, p. 420).

Taken together, two statistical predictions follow from this perspective on g. First, any two
batteries composed of mental tests should be substantially correlated, even if they do not overlap in
their included tests or captured abilities. Second and relatedly, the generalizability of g is not a
function of the number or breadth of tests used to obtain g, meaning that g-factors from small,
narrow batteries will correlate just as highly as g-factors from large, comprehensive batteries.

Perspective 2: Complete Dependence on the Indicator

The second approach, originally advocated by Thurstone, is the direct antithesis of Spearman’s
view (Thurstone, 1947). It holds that the general factor of intelligence is not a real trait independent
from its measurement but merely a statistical construct that is entirely dependent on the com-
position of the test battery from which it is extracted. This view was shared by Horn, who
described g as a conglomerate of distinct abilities determined by the specific tests used (Horn,
1989). It was also popularized by Gould, who argued that g is a mathematical artifact with no
psychological reality (Gould, 1996).
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From this position, it follows that different batteries should yield completely different general
factors—a prediction that has previously been falsified (Jensen & Weng, 1994; Reeve &
Blacksmith, 2009a). Surprisingly, with regard to the number of indicators included in the bat-
teries, the stance of “complete dependence on the indicator” is similar to the “indifference of the
indicator” stance, since the number of tests used to estimate g is not relevant under either. If the
indicators are indifferent, then an arbitrarily small and narrow set of tests is sufficient to estimate g.
But if there is complete dependence on the indicators, then no matter how many tests are used,
different batteries should always yield different g-factors.

Under the “complete dependence on the indicator” approach, g factors obtained from two
different batteries are identical if and only if the composition of the two batteries is identical in
terms of the narrow abilities they measure, that is, if each battery consists of subtests that measure
the same exact narrow abilities with the same number of subtests and the subtests’ factor loadings
are equal. Since this is almost never the case, one cannot realistically expect very high correlations
between g-factors obtained from different psychometric batteries. At the same time, if g-factors are
estimated from batteries that measure completely different specific abilities, then this perspective
predicts a 0 correlation between the g-factors obtained—a prediction that is the direct opposite of
what the indifference of the indicator stance would predict. Similarly, the higher the extent of
completely overlapping specific abilities, the higher the correlation, but with a limited number of
such overlaps the correlations between general factors are expected to be low.

Perspective 3: The Intermediate View

An intermediate stance suggests that general factors derived from different test batteries are
equivalent to the extent that the batteries broadly sample a wide range of abilities without
overrepresenting any single ability. Jensen and Weng introduced the concept of psychometric
sampling error: “Just as there is sampling error with respect to statistical parameters, there is
psychometric sampling error with respect to g, because the universe of all possible mental tests is
not perfectly sampled by any limited set of tests” (Jensen & Weng, 1994, p. 236). Consequently,
single-test estimates of g are viewed as inadequate. General factors can be equivalent only if the
test batteries are sufficiently large and diverse to average out specific processes. In contrast to the
battery dependence perspective, this does not require an actual overlap in captured abilities, just
sufficient diversity.

Two theories of the positive manifold (and thus psychometric g) closely align with this in-
termediary perspective. The Bonds Model (Bartholomew et al., 2009) explains the positive
manifold of intelligence as the result of many small, simple processing units (or “bonds”) in the
brain that work collectively and are sampled by different mental tests in an overlapping fashion. In
the Bonds Model, the correlations between any two tests reflect simply the number of processes
they share relative to the total number of processes they collectively sample. Consequently, the
Bonds Model predicts that general factors become increasingly similar as test batteries approach
complete coverage and balanced representation of the brain’s processing units. That is, the larger
the number of tests from which g is obtained, the better the general factor.

Process Overlap Theory (Kovacs & Conway, 2016) is similar to the Bonds Model in that it
posits that positive correlations among diverse mental tests result from overlapping sampling of
cognitive processes. However, unlike in the Bonds Model, where all bonds have an equal
probability of being sampled by any given test and therefore the correlation between any two tests
is the direct, linear function of the number of bonds sampled by both tests in proportion to the
processes uniquely sampled by each test, Process Overlap Theory identifies domains of
achievement and ability and differentiates generalist, “multiple-demand” processes engaged
across a wide range of tests, as opposed to specific processes sampled by a narrow range of tests
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only. Crucially, this theory proposes multiple generalist processes, with no single process shared
by all tests. Thus, it predicts that general factors are identical only if they primarily reflect
overlapping, generalist cognitive processes. For this to be achieved, a battery with a sufficient
number and breadth of tests is needed. Conversely, any single test predominantly reflects the
specific process related to the specific ability it measures and only secondarily the generalist
processes.

Process Overlap Theory proposes that g does not reflect any psychological or neural construct;
instead it is merely the factor analytic equivalent of the mathematical fact of the positive manifold
itself. Additionally, the theory claims that the positive manifold and thus g are emergent properties
resulting from an overlap of processes, which makes g a formative rather than a reflective
construct—the common consequence, not the common cause of the positive correlations between
tests that enable the extraction of a general factor (Kovacs & Conway, 2019). Nevertheless,
Process Overlap Theory emphasizes that formative constructs can be useful for predicting
outcomes. In particular, g can be useful in predicting general outcomes that are not more de-
pendent on any of the specific abilities than on the others. For instance, g is more useful in
predicting a grade point average than a reading score or a math score. Since formative constructs
are dependent on their indicators by definition, in order for g to be a useful predictor of general
outcomes, specific abilities need to be balanced in the batteries from which g factors are obtained.

Empirical Evidence on the Generality of g

Several studies have examined the generality of g by correlating general factors from different
batteries. Thorndike (1987) reported an average correlation of .85 between g loadings across six
batteries. Similarly, Ree and Earles (1991) found correlations ranging from .93 to .99. Keith,
Kranzler, and Flanagan (2001) reported a .98 correlation between two batteries, Johnson et al.
(2004) reported correlations as high as .99 and 1.0 across three batteries, and Johnson et al. (2008)
found correlations ranging between .77 and 1 between five batteries. In a comprehensive analysis,
Jensen and Weng (1994) found an average correlation of .98 between g-factors derived using
different methods.

However, most of the aforementioned correlations were based on very comprehensive cog-
nitive batteries (e.g., Wechsler Adult Intelligence Scale). Thus, the correlations are not very
informative to distinguish between the presented perspectives on the g-factor, as all three per-
spectives would predict high correlations between comprehensive batteries that cover highly
overlapping sets of broad abilities. Some indication that correlations may diminish in less
comprehensive batteries can be found in the results by Johnson et al. (2008). Here, the g-factor
from the shorter Cattell Culture Fair Test exhibited descriptively lower correlations with larger
batteries than the larger batteries did with each other. Another study showed that g-factor loadings
depend on the specific batteries used, concluding that “psychometric sampling error should be
targeted as a problem and attempts at representative sampling of specific cognitive abilities should
be made when constructing measures representing the general factor. Thoughtfully constructed
batteries of cognitive ability tests should yield general factors and general-factor scores that are
largely invariant across batteries” (Floyd et al., 2009, p. 464). A related study supported this
conclusion, emphasizing that small, single-factor test samples do not adequately represent the
general factor (Major et al., 2011).

The Present Study

In the present study, we present an analysis designed to distinguish between the predictions made
by the three different perspectives on g. Specifically, we systematically varied the number of tests



Breit et al. 5

and abilities covered between test batteries. To do so, we utilized data from the recent U.S.
standardization of the Woodcock—Johnson Tests of Cognitive Abilities V (WJ-COG-V) and
examined all combinatorially possible combinations from which general factors could be
extracted. We adopted the Cattell-Horn-Carroll (CHC) model of cognitive ability structure
(McGrew, 2009) in selecting our higher-order model. To evaluate the predictions, we examined
the magnitude and distribution of the correlations and their relationship with battery size. In
accordance with the intermediate view, we expected substantial g-factor correlations that sig-
nificantly increase with increasing numbers of tests included and abilities captured.

Methods

Test Instrument and Sample

The Woodcock—Johnson V (WJ V) is the latest edition of the Woodcock—Johnson test series
(McGrew et al., 2025). It is an individually administered measure designed for ages 3 through
adulthood. The WJ V comprises a cognitive test battery, an achievement test battery, and a virtual
test library. The present investigation focuses on the cognitive test battery (WJ V COG). The WJ V
COG contains 20 subtests, 14 of which form the standard set. These 14 subtests assess 7 CHC
broad abilities (i.e., 2 subtests per broad ability): Comprehension-Knowledge (Gc), Fluid Rea-
soning (Gf), Cognitive Processing Speed (Gs), Visual Processing (Gv), Retrieval Fluency (Gr),
Long-Term Storage (Gl), and Working Memory Capacity (Gwm). The subtests of the standard set
with their corresponding CHC abilities are presented in Table 1.

The present study draws on the standardization sample of the WJ V. This sample was carefully
recruited to closely represent the U.S. population in terms of geographic distribution, race/
ethnicity, and educational levels. Detailed descriptions of the sampling procedures are provided in
the technical manual. The sample comprises a total of N = 5838 participants aged 3 to 98. To
ensure that all g-factor scores were based on the same sample, we excluded 506 participants with
missing data on any subtest, resulting in a final sample size of N = 5332. Because the analyses in
this study represent secondary analyses of data collected as part of WJ V standardization, in-
stitutional review board approval was not sought.

Analyses

We conducted two sets of analyses: the first based on the one-factor model, and the second based
on the hierarchical (i.e., second-order) model of cognitive abilities. We used age-standardized
subtest scores for all analyses. Prior to analysis, these scores were standardized as z-scores to
minimize the risk of model-nonconvergence, which can sometimes be increased with large in-
dicator values. All analyses were conducted in R version 4.2.2.

One-Factor Model. First, we generated all possible combinations of at least three WJ V COG
subtests. Three subtests were the minimum required to identify the one-factor model. This
procedure resulted in 16,278 unique combinations of subtests. Next, we estimated the one-factor
model (top panel of Figure 1) based on each combination using the lavaan package (Rosseel,
2012) and exported the g-factor scores. This step produced a dataset of 5,332 participants, each
with 16,278 g-factor scores. Third, we computed the full Pearson correlation matrix of all g-factor
scores, resulting in 132,507,563 correlations in total. We extracted several statistics from this
matrix: The minimum and maximum values, the median, mean, and standard deviation, and the
proportion of correlations falling within 0.1-wide bands. In addition, we examined the subset of
16,277 correlations with the most comprehensive g-factor (g-complete) using all 14 subtests. In
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Table I. W]V Standard Set Subtests

Broad
Name Description ability
Analysis-synthesis Analyze puzzles and determine missing components. Gf
Block rotation Identify two patterns of blocks that match a target pattern. Gv
Letter-pattern matching In a row of six-letter patterns, rapidly locate two identical patterns. Gs
Matrices Select the correct option to complete a figural matrix. Gf
Number-pattern In a set of numbers, rapidly locate two identical numbers. Gs

matching

Numbers reversed Recall a sequence of aurally presented digits in reverse order. Gwm
Oral vocabulary Provide synonyms and antonyms of aurally presented words. Gce
Phonemic word retrieval Rapidly generate words based on phonemic cues. Gr
Semantic word retrieval Rapidly generate words based on semantic cues. Gr
Spatial relations Identify pieces that together form a target shape. Gv
Story comprehension Answer comprehension questions about aurally presented stories. Gl
Story recall Recall complex, aurally presented stories. Gl
Verbal analogies Complete logical word relationships. Gc
Verbal attention Answer questions about aurally presented series of animals and Gwm

digits.

this subset, we again extracted descriptive statistics and additionally estimated the correlation
between the number of subtests included in the g-factor model and the magnitude of the correlation
with g-complete.

Hierarchical Model. The analytic procedure for the hierarchical model was based on the same logic
as the one-factor model. First, all possible combinations of at least three WJ V COG broad abilities
were generated, resulting in 99 unique combinations. We then estimated the hierarchical model
(bottom panel of Figure 1) based on each combination using the lavaan package (Rosseel, 2012),
exported g-factor scores, and computed the correlation matrix. This resulted in a matrix of
4,851 correlations. The descriptive statistics were computed as described above. Again, we also
examined the subset of 98 correlations with the most comprehensive g-factor (g-complete) that
included all seven broad abilities. We computed the descriptive statistics and the correlation
between the number of broad abilities included in the model and the magnitude of the correlation
with g-complete.

Results
One-Factor Model

The correlations between the different g-factors in the one-factor model ranged from »=.360 to » =
1,000, with a median correlation of » = .890 (mean = .865; SD = .087). The distribution of
correlations is visualized in the top panel of Figure 2, and the distribution within 0.1-wide bands is
presented in Table 2. Almost half of the correlations exceeded r = .9 (44.1%), whereas 7.1% of
correlations fell below » = .8.

The correlations with g-complete ranged from » = .616 to r = .998, with a median of » = .949
(mean = .929; SD = .060). This distribution is illustrated in the bottom panel of Figure 2. Table 2
presents the distribution within 0.1-wide bands. Most correlations exceeded r = .9 (82.5%), with
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Figure 1. lllustrations of the One-Factor Model (Top) and Hierarchical Model (Bottom)

only 6% falling below » = .8. The correlation with g-complete increased significantly with an
increasing number of included subtests (r = .602, p < .001). Figure 3 visualizes this relationship.

The histograms in Figure 3 show that for the g-factors based on smaller numbers of subtests
(i.e., 3—6), there is a small group of correlations with g-complete that are much lower than the
others. To understand this pattern, we conducted an exploratory analysis in which we separated
these low correlations (» < .7 for 3 or 4 subtests, » < .8 for 5 or 6 subtests) from the others and
examined the frequencies of all specific subtests underlying the g-factors of the different sets. The
results are shown in Table 3, where a clear pattern emerges. Virtually all of the very low cor-
relations are from g-factors that include both Gs subtests. In other words, when a g-factor is based
on a low number of subtests, a strong representation of Gs subtests substantially lowers the
correlation with g-complete.

Hierarchical Model

The correlations between the different g-factors in the hierarchical model ranged from r = .645 to
r =.995, with a median correlation of » = .898 (mean = .886; SD = .067). The distribution of
correlations is visualized in the top panel of Figure 4. Table 2 shows the distribution within 0.1-
wide bands. Again, almost half of the correlations exceeded » = .9 (48.9%), whereas 12.5% of
correlations fell below » = .8.
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Figure 2. Distribution of the g-Factor Correlations Based on the One-Factor Model

The correlations with g-complete ranged from » = .842 to r = .995, with a median of » = .947
(mean = .941; SD = .035). The distribution of correlations is visualized in the bottom panel of
Figure 4. Table 2 presents the distribution within 0.1-wide bands. A substantial majority of
correlations exceeded »=.9 (83.7%), and no correlations fell below » = .8. Similar to the one-factor

Table 2. Distribution of g-Factor Correlations in Percentages

Magnitude of One factor model: All One factor model: g-complete Hierarchical model: All Hierarchical model: g-complete
r correlations correlations correlations correlations

.90-1.00 44.09 82.52 48.90 83.67

.80-.90 36.95 11.48 38.57 16.33

.70-.80 11.85 4.98 11.87

.60-.70 5.58 1.03 0.66

.50-.60 1.45

40-.50 0.08

.30-40 <0.01
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Table 3. Frequency of Subtests Included in g-Factors that Correlate Low or High with g-Complete, for g-
Factors Based on 3 to 6 Subtests

Subtest Broad ability % included low* % included high Difference
Oral vocabulary Gce 24.38 38.81 —14.43
Verbal analogies Gce 24.11 38.83 —14.72
Analysis-synthesis Gf 29.18 38.19 —9.01
Matrices Gf 30.27 38.03 —7.76
Story comprehension Gl 29.45 38.15 —8.70
Story recall Gl 28.77 38.22 —9.45
Phonemic word retrieval Gr 30.96 37.96 —7.00
Semantic word retrieval Gr 31.37 37.89 —6.52
Letter-pattern matching Gs 99.45 29.07 70.38
Number-pattern matching Gs 99.59 29.05 70.54
Block rotation Gv 29.59 38.13 —8.54
Spatial relations Gv 30.55 38.01 —7.46
Numbers reversed Gwm 29.45 38.15 —-8.70
Verbal attention Gwm 29.18 38.19 —9.01

Note. *r < .7 for 3 or 4 subtests; r < .8 for 5 or 6 subtests.

model, the correlation with g-complete increased significantly with an increasing number of broad
abilities included (» = .761, p < .001). This relationship is visualized in Figure 5.

Discussion

We investigated the generalizability of the general factor of intelligence (g) using the Woodcock—
Johnson Tests of Cognitive Abilities administered to a large, nationally representative sample of
the U.S. population. Two structural models were employed: a one-factor model and a higher-order
(hierarchical) model aligned with the Cattell-Horn-Carroll (CHC) theory of cognitive abilities. To
examine the robustness of the extracted g-factors, we systematically generated all possible
combinations of subsets or abilities permitted by the model constraints (i.e., at least three in-
dicators of g). We then analyzed (a) the correlations among g-factors derived from each of these
combinations (“batteries”) and (b) the correlation between each derived g-factor with the g-factor
obtained from the full battery of all available tests or abilities (“g-complete™). If g-complete is
interpreted as the most comprehensive and optimal estimate of the general factor of intelligence,
then the correlation between the g extracted from each battery and g-complete provides a practical
indicator of the quality or fidelity of that battery’s g.

Our findings show that a greater number of subtests generally results in stronger correlations
with g-complete. Reliably generating a high-fidelity estimate of g (which we define as a correlation
greater than .90 with g-complete) required one of the following: (a) using at least six subtests in the
one-factor model, with no more than one measuring Gs, or (b) using a hierarchical model with at
least three, ideally four or more broad cognitive abilities. Both options imply that three or more
broad abilities are present in the battery. These findings can inform applied assessments and
scientific studies in which a high-quality g-factor estimate is of interest.

We also found that in certain circumstances, including Gs subtests in the battery resulted in a
g-factor that correlated much more weakly with g-complete than other subtest combinations.
Specifically, this occurred when six or fewer subtests were used in the one-factor model and both
Gs subtests were included. This finding suggests that a strong representation of Gs in the set of
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Figure 4. Distribution of the g-Factor Correlations Based on the Hierarchical Model

subtests used to estimate g leads to a g-factor that is heavily biased towards Gs, reducing the
correlation with g-complete (although this correlation remains substantially positive). This
phenomenon seems to be avoided by ensuring that Gs subtests represent less than a third of the
indicators in the one-factor model or by using a hierarchical factor model.

Following this result, Gs should not be very strongly represented in cognitive batteries (i.e., less
than one-third of the indicators in the one-factor model) if the purpose is to provide a general
ability estimate. However, the visual search tasks used in the Woodcock—Johnson Tests to measure
Gs represent only a subset of the tasks that can be used to meaningfully operationalize the
processing speed factor. Thus, it is questionable whether our findings generalize to other op-
erationalizations of Gs. In any case, this finding is certainly a warning that it is possible to select
tasks and task combinations that lead to very different, and probably biased, g-estimates compared
to most others. These results are particularly important because, according to a survey of factor
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Figure 5. Distribution of the g-Complete Correlations Based on the Hierarchical Model for Different
Numbers of Included Abilities

analytic practices, Gs is among the five most frequently assessed cognitive abilities when ob-
taining an estimate of g, alongside Gc, Gf, Gv, and Gq (Reeve & Blacksmith, 2009b). Generally,
our findings underscore the importance of sampling broadly across the spectrum of mental abilities
where at least three, but optimally more broad abilities, are represented.

Our results have direct implications for assessment with the WJ V in general and for the
interpretation of test scores in particular. Overall indicators of general ability, such as the GIA and
BIA, should be used with caution. In the GIA, each broad CHC ability is assessed with a single
test. While a broader representation of the broad CHC-abilities may be desirable, this index meets
the minimum requirements that we identified. Conversely, the BIA is a brief index that measures
only three broad abilities (Gf, Gc, and Gwm) with one test each. This combination meets only the
lowest limit of the requirements for g-factor estimates that we identified. Moreover, this set of
abilities misses important abilities in general and broad visual ability (Gv in the CHC model) in
particular, which is a very important yet frequently overlooked aspect of human cognition
(Lubinski, 2010; Webb et al., 2007). Therefore, the BIA is a very crude indicator of overall
intellectual functioning and should not be used for impactful diagnostic decisions or for designing
interventions. However, the most problematic cases in practice are self-made short-form com-
posite scores using only two or three, and sometimes just one, WJ subtests to estimate general
ability. Most of these composites violate the minimum requirements for a g-factor estimate,
leading to test scores that likely do not sufficiently correlate with a comprehensive g-factor
estimate.

Theoretical Implications

Regarding the different perspectives on g, our results support the “intermediate stance,” which
states that general factors can be extracted from highly correlated batteries, but only if the batteries
are large enough to cover a sufficient breadth of human cognitive abilities. That is, our results are
in agreement with both the Bonds Model of intelligence and Process Overlap Theory, which
predict that general factors obtained from different batteries are nearly identical as long as the
batteries are sufficiently comprehensive and balanced.
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Our results clearly do not align with a strong interpretation of the principle of the indifference of the
indicator, which states that even a very narrow range of tests (maybe even just a single test) can be used
as a proxy for g. Based on our results, we can safely advise against interpreting the result of any single
test as an adequate proxy for g. If one administers the Raven’s Progressive Matrices, they are assessing
fluid reasoning; if one administers the Peabody Vocabulary Test, they are assessing comprehension-
knowledge (Gc), etc. In order to estimate g, one needs a broad and large battery.

However, our results do not align with the stance that the general factor is a meaningless
construct either—one that completely depends on the selection of tests used to obtain it. When g is
estimated from a large and diverse battery where Gs is not overrepresented, general factors can
indeed be generalized.

Limitations and Directions for Future Research

The present study has some limitations that need to be considered when interpreting the results.
First, our models were constructed using a limited pool of 14 tests. Different operationalizations of
the included CHC abilities and the inclusion of additional CHC abilities (e.g., Ga and Gq) may
alter the results, raising questions about the generalizability of our findings and the need for
replication studies.

Second, our hierarchical model was limited to two indicators per broad ability. Therefore, we
could not examine the effect of varying the number of first-order factor indicators. This limits the
practical implications we can derive from our results to the number of broad abilities included in
the hierarchical model.

Third, we focused on the quantitative requirements that allow g-factors to be generalized.
However, our results also required us to discuss substantive issues, such as including processing
speed when obtaining g estimates. In a companion paper currently in preparation, we address these
issues in greater detail. We investigate whether different g-factors result depending on the specific
abilities included in the model; in particular, we examine whether it is possible to meaningfully
differentiate verbal g and nonverbal g.

Finally, this paper focused solely on psychometric g: the general factors obtained from
correlation matrices of cognitive tests. Although our results may have implications for a proposed
psychological g—a hypothetical psychological or biological mechanism that psychometric g
reflects—this paper does not address this directly.
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